Exercise 1

Find the square roots of $(a) 2 i ;(b) 1-\sqrt{3} i$ and express them in rectangular coordinates.

$$
\text { Ans. (a) } \pm(1+i) ; \quad(b) \pm \frac{\sqrt{3}-i}{\sqrt{2}}
$$

Solution

For a nonzero complex number $z=r e^{i(\Theta+2 \pi k)}$, its square roots are

$$
z^{1 / 2}=\left[r e^{i(\Theta+2 \pi k)}\right]^{1 / 2}=r^{1 / 2} \exp \left(i \frac{\Theta+2 \pi k}{2}\right), \quad k=0,1 .
$$

$\underline{\text { Part (a) }}$
The magnitude of $2 i$ is $r=2$, and the principal argument is $\Theta=\pi / 2$.

$$
(2 i)^{1 / 2}=2^{1 / 2} \exp \left(i \frac{\frac{\pi}{2}+2 \pi k}{2}\right), \quad k=0,1
$$

The first root $(k=0)$ is

$$
(2 i)^{1 / 2}=2^{1 / 2} e^{i \pi / 4}=\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)=\sqrt{2}\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)=1+i
$$

and the second root $(k=1)$ is

$$
(2 i)^{1 / 2}=2^{1 / 2} e^{i 5 \pi / 4}=\sqrt{2}\left(\cos \frac{5 \pi}{4}+i \sin \frac{5 \pi}{4}\right)=\sqrt{2}\left(-\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}\right)=-1-i
$$

Part (b)

The magnitude and principal argument of $1-\sqrt{3} i$ are respectively

$$
r=\sqrt{1^{2}+(-\sqrt{3})^{2}}=2 \quad \text { and } \quad \Theta=\tan ^{-1} \frac{-\sqrt{3}}{1}=-\frac{\pi}{3},
$$

so

$$
(1-\sqrt{3} i)^{1 / 2}=2^{1 / 2} \exp \left(i \frac{-\frac{\pi}{3}+2 \pi k}{2}\right), \quad k=0,1
$$

The first root $(k=0)$ is

$$
(1-\sqrt{3} i)^{1 / 2}=2^{1 / 2} e^{-i \pi / 6}=\sqrt{2}\left(\cos \frac{\pi}{6}-i \sin \frac{\pi}{6}\right)=\sqrt{2}\left(\frac{\sqrt{3}}{2}-i \frac{1}{2}\right)=\frac{1}{\sqrt{2}}(\sqrt{3}-i),
$$

and the second root $(k=1)$ is

$$
(1-\sqrt{3} i)^{1 / 2}=2^{1 / 2} e^{i 5 \pi / 6}=\sqrt{2}\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)=\sqrt{2}\left(-\frac{\sqrt{3}}{2}+i \frac{1}{2}\right)=-\frac{1}{\sqrt{2}}(\sqrt{3}-i) .
$$

$$
z=-\frac{1}{\sqrt{2}}(\sqrt{3}-i) \underbrace{\substack{\ln }}_{\substack{\operatorname{Im} z \\ z=1-\sqrt{3}}} \operatorname{Re} z
$$

